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INTRODUCTION 

 

This project concerns the efficacy of the implementation of spectral processing tools for a multi-

sensory (in this case audio-visual) education/exploration of timbre. Timbre was stratified into tone-

colour and temporal properties, and as a means of simplifying the project, we focused on tone-

colour. The team created software, a presentation and demonstrations all exploring the titular brief, 

and as the project group operated, so our reports will be divided. This report will primarily be 

concerned with the application of spectral processing tools using Fourier transformation algorithms 

in real time. I will abstract away from the particular tools/languages used, and focus instead on the 

processes and their interactions, as a means of making this research as transferable as possible. The 

specificities of implementation will likely be covered by my colleague Sam Sutton. For discussion of 

the educational aspects of our project, please see the work of my colleague, Imogen Kelly, who has 

investigated this at length.  

BACKGROUND 

 

As is discussed by Ian Johnston (Johnston 2009:28), a sound may be identified by a number of 

qualities including: pitch, loudness, and duration. These are pretty straightforward to perceive in a 

note, but the fourth quality, timbre, is the most elusive of the properties, appearing to be comprised 

of different combinations of the other three (Siedenburg et al. 2019:2).  

If we consider the volume envelope (using the standard “Attack, Decay, Sustain, Release” 

descriptorsi), of an acoustic double bass in comparison to an electric double bassii (both belonging to 
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the violin family, and therefore subject to its models and modes) for example, one might argue that 

the acoustic had more “fullness” or “body”. We would be justified in the hypothesis that this is a 

result of longer decay time for the low end of the instrument, occurring due to resonance with a 

larger body. This is because the lowness of frequencies excited, as well as the amount of excitement, 

are proportional to the size of the body, among other factors (Välimäki and Holm 2000:2,3). That is 

to say that as the body gets smaller, the decay time decreases, and the pitch of frequencies 

amplified becomes higher and higher. With the quality of modern recording technology, as well as 

processing such as pitch-shifting and time-stretching (Heller Murray et al. 2019:2272), one can see 

how this definition of timbre can be influenced by all other qualities of a sound, making it difficult to 

comprehend. This troublesome three-dimensionality is demonstrated by the movement of the 

frequency analysis which audacity can performiii.  

…But what if we wanted to talk about the relation of JUST amplitude and frequency, whether that is 

with regards to one of those slices, or the overall sound produced by the instrument? What quality 

would we then be discussing? Perhaps part of untying this definition, particularly in relation to this 

research project, lies in the reappreciation of a term often synonymized with timbre – “tone-colour”, 

in fact my separation of these two terms flies in the face of “measured tones” (Johnston 2009:28), 

but I believe that this is rightfully so. How I wish to distinguish between the two as a means of 

unpacking timbre is purely on the basis of their immediate lexical semantics. “Tone-colour” appears 

to refer to the palate of a sound – its overall tonal qualities – completely freeing us from the 

envelopes which timbre seems so married toiv. This distinction/subsetting of definitions is not an 

arbitrary/manufactured one, as is demonstrated by the foundational work of Helmholtz (1886; 

Siedenburg et al. 2019:6), the framework of which wasv instrumental for the construction of this 

project. From an educational standpoint, we must first foster an understanding of this tone-colour of 

a sound, since it is only with this that we can start to describe how it moves to affect perceived 

timbre. This sub-sectioning is fundamental to our project, due to the limited nature of our 

timeframe/resources, we were only able to focus on the first section. In line with Helmholtz’s work, 
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for the rest of this report discussion of tone in relation to timbre “shall disregard these peculiarities 

of beginning and ending, and confine our attention to the peculiarities of the musical tone which 

continues uniformly" (H. L. F. Helmholtz and Ellis 1886:67). 

Operationalising tone-colour: 

But what are these peculiarities of the musical tone which continues uniformly? All sound is 

comprised of oscillations in a medium, and the number of oscillations per second is called the 

frequency, measured in Hertz (Hz). For the majority of humans, all perceivable sound falls in the 

continuous range of 20hz to 20,000hz, and is discretized into pitch classes by temperament 

systemsvi. The tone-colour of a sound could thus be considered as the space which it occupies on this 

frequency spectrumvii.  

For a single tone, the most immediate demonstrations of such spectral content are harmonic or 

inharmonic.  The harmonic series denotes the mathematical relation between a pure fundamental 

and the overtones which occur above itviii. Content from this can occur at varying amplitudes 

depending on the placement and amplitude of excitation, medium of wave (for example stringed vs 

wind instruments) and more. For example, bowing a violin harder and closer to the bridge excites its 

upper harmonics more than if one were to bow softly and nearer the neck (Charlotte Desvages 

2016: 1:50 ; Johnston 2009:127). 

Inharmonic content can arise in the following situations.  

- The introduction of a noise source to increase the footprint of the signal in the frequency 

spectrum, such as a guitarist in a rock band using distortion to hype up yet another average 

solo, or the use of subtle tape saturation in mixing and mastering to make signals appear to 

occupy more sonic spaceix. 

- Anything with wave-equation of dimension n>1, such as drums (n = 2) or bells (n=3) (Haraux 

2018: 9-13). 
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- Inharmonic synthesis, often modelled by displacement “adding a constant frequency value k 

to all harmonic frequencies . . . for example, 230, 430, 630, 830, ...,1630 Hz (with the original 

f1 = 200 Hz, and k = 30 Hz)” (Schneider and Frieler 2009:23), or intermodulation “. . . no 

fundamental is present (e.g.,1230, 1430, 1630, 1830…Hz)”(de Boer 1976; Schneider and 

Frieler 2009:23).  

Since we wanted to allow for combinations of either of these scenarios, our program had to be free 

from any dependence on detection of a fundamental, since it was possible there simply wouldn’t be 

one. 

Since the cause for the differentiation of tone-colour from timbre was the removal of time-domain 

qualities introduced by envelopes, we should say that discussion of the tone-colour of a sound 

pertains instead to the frequency-domain, within which the frequency range of the signal can be 

manipulated by a method known as spectral processing (Rao, Kim, and Hwang 2010:236). 

DESIGNING THE PROCESSING TOOLS 

 

This spectral processing is where our research project really begins. So how do we do it, and how 

does one even access the frequency domain? Such a problem was addressed by Mathematician 

Jean-Baptiste-Joseph Fourier, who devised a method to turn periodic waveforms into variables for a 

series of sine waves (Lewis and Welch, n.d.:1675). His method was further developed by Cooley and 

Turkey into a Discrete Fourier Transform (Cooley and Tukey 1965), which “maps a sequence x(n) into 

the frequency domain” (Rao, Kim, and Hwang 2010:1), so is suitable for digital signal processing, 

which is always discrete.  

 

A brief aside: 
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I will do my best to keep this report process driven rather than number driven, but for 

the mathematically inclined among you, implementation and further discussion of 

these techniques is in the appendix x (I would advise that one reads this report with 

two copies open, so that both the discussion and diagrams are simultaneously 

viewable). Though I implemented this method in Max (https://maxforlive.com) – due 

to its accessibility, interactivity, and Ableton live integration – this could be done in 

any DSP tool. 

 

The numbers coming out of the FFT matrix represent N = Frame size divisions of the frequency range 

from 0 to the sampling rate. The first number represents the energy at 0 Hz, the second number 

represents the energy at (1/FS) * the sampling rate, the third number represents the energy at 

(2/FS) * the sampling rate, and so on. 
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It is at this point where our first spectral manipulator, the Frequency amplitude filter/gate, comes 

into play:

 

I designed a piece of code to filter out background noise from our data. In the time-domain, such a 

device is commonplace, the most rudimentary of which being the audio-gate, which requires a signal 
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to have an amplitude within a certain range for it to be made audible. This frequency gate did 

exactly the same thing, but in the frequency-domain and with upper, as well as lower bounds. The 

amplitude of each frequency was considered, and any frequencies which had amplitudes outside of 

the user-defined range were removed from the signal. Despite its simplicity, this worked remarkably 

wellxi, and served as a proof of concept for the re-appropriation of time-domain processes to the 

frequency domain. With time-domain variables, such as attack and delay times, the results could 

have been smoother, but this was sufficient for our needs, such devices have already been 

developed to far greater sophistication that we hoped to achieve, and this had shown us how 

accessible spectral interaction could be, so we moved onto our primary task. 
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1  -  NOTE:  TO REMOVE NOISE FROM OUR INPUT SIGNAL BEFORE PROCESSING ,  TASK A  WOULD HAVE TO BE PLACED 

IN SERIES AND BEFORE PROCESSES B  AND C,  THEY ARE MERELY PLAC ED IN PARALLEL TO DEMONSTRATE THEIR 

BEHAVIOR IN A MUTUALLY INDEPENDENT SITUATION  
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Now that we have signals denoting the amplitudes and phases of each frequency (expand on we 

want to create some imprint of the tone-colour of the sound, in particular, removing the change of 

this over time. This desire resulted in processes B and C. Before processing, we mapped our DFT into 

matrices, chopping the frequency spectrum into bins and inscribing their amplitudes and phases into 

a 2-plane matrix within the frequency-domain xii. Now, for each bin of frequencies we have the 

average amplitude and phase displacement of the waves within. If we access this matrix in the time 

domain, we can perform matrix operations on our waveform in real timexiii. The first thing I did was 

to average the matrix over a time T, so instead of a matrix which updates at the sampling rate of the 

processor, it is a more stable/indicative matrix, displaying the average of the values for (in the case 

of my tool) the past 5 seconds. This matrix contains the data which we would say corresponds to our 

earlier definition of tone-colour but – short of bombarding students with values for amplitude and 

phase – this data is still inaccessible. In order to remedy this, we set about not only visualizing it, but 

making it audible. Inspired by the findings of Al-Ahrani et al (2010) from the field of mathematics 

education, we hope that this will aid the reinforcement of understanding of tone-colour. 

The first task, audiation, corresponds to process (B) on the flowchart. We use the average matrix as 

a buffer matrix (imagine an equalizer but with a volume slider for each frequency bin – that’s N = 

matrix size frequencies being independently controlled!). This buffer is then used to attenuate 

frequencies of a white noise signal in correspondence to the average matrixxiv. This subtractive 

synthesis process results in an indefinite sound which bears the same overall tone-colour as the 

source signalxv.  

We can achieve the visual task, as well as work around any equaliser errors of the auditoryxvi by 

using additive resynthesis. We can use midi data to drive both lighting and sine waves with specific 

frequencies and amplitudes as given by the FFT (we used a lightbox which was created last year for 

visualization, the implementation of which will surely be covered by my colleague Sam Sutton). This 

midi conversion initially appeared to simply be a task of matrix transformation and resamplingxvii (it 
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was not, but this will be discussed to greater length in the results and conclusion sections of the 

paper) – making our original matrix into a midi compatible one, which could generate corresponding 

midi notes.  

 

These midi notes could be sent to a polyphonic sine wave synthesizer to recreate this tonal-imprint, 

and we affectionately named these recreations “tone-chords”– a play on the jazz-theory emphasis 
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on chord-tones/colour-tones, and an acknowledgement that our midi output was chordal, though 

generated from the tone-colour of a single note. This midi data could also be sent to a visualizer, 

such as the lightbox created by the previous cohort of the course, though the mappings from midi to 

light vary depending on the constraints of the lightbox. In the case of our lightbox, it was limited to 

one octave, and without velocity sensitive/ dimmable LED’s, so we arpeggiated our output, so that 

we could cycle through the octaves. 

 

Limitations of these methods: 

Since this process is now taking audio into the digital domain and back, the limitations of Digital 

Signal Processing (DSP) must be acknowledged. Even if we disregard latency and consider that I am 

running a system at 24bits with a 48Hz sampling rate, digital artefacts must still be acknowledged. As 

one approaches the Nyquist frequency (half of the sample rate), the number of samples per waves 

becomes such that the negative part of the oscillation is lost, and so the wave can be reconstructed 

as being of a much lower frequency. The frequency perceived by the computer reflects back down 

from this point and can start to cause interference/inter-modulation (known as aliasing) 

before/during processingxviii. For this reason, it is important to use low pass filters at this frequency 

throughout an implementation, or to: Filter -> upsample during processing -> filter -> down-sample 

before output. However, there are still issues of intermodulation which may occur even before 

processing, and below our Nyquist frequencyxix .  

RESULTS AND REFLECTIONS 

 

The spectral shaping aspect of our project worked extremely well, as demonstrated by the use of the 

effects (demonstrated in our presentation as well as in this appendix). This also has uses for the 
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sound design world, as the methods used to recreate a tonal imprint with white noise could be used 

to subtractively superimpose the tone-colour of a sound onto any other audio source. 

However, our midi efforts were plagued by false positives, rounding errors, aliasing, as well as 

artefacts introduced by windowing, all of which made the midi implementation too unreliable for 

use. However, promising work from Lagrange, Marchand, and Rault (2007) describes methods of 

analysis which could be combined with our own to create more reliable polyphonic data, while the 

work of Tian Wenbo et al (2012) demonstrates how the implementation of alternative algorithms for 

both windowing and FFT can lead to more suitable frequency analysis. We could also have tried to 

eliminate nearby false positives (as can be found near the root in appendix vi), with discrete 

methods, or using differential equations to estimate the turning points (and thus maximum 

frequency bins) for a region. If I were to do this project again, I would stay away from midi for these 

reasons, and instead pursue sonography as a means of visualisation. The visualisation of spectral 

data has long history with Jitter – a visual variant embedded in Max for live, and so extremely 

suitable for integration into the analysis we had already conducted at this point. Another route could 

be non-real-time processing, which affords us the opportunity to compare different window sizes, 

reducing the errors and false positives which we came across. This could also be developed to 

include the machine learning techniques explored by the other groups. 

Our project’s mapping was based on an equal tempered scale, but we know that overtones don’t 

work exactly like this. And what about out of tune notes? If we used additional processing such as 

machine learning to estimate a fundamental frequency of the tone, then we could construct a just-

intonated overtone scale above it and create a more corelated midi output by employing midi pitch 

bends protocols.  

In the case that there is a complex tone which generates a high number of midi notes, we noticed 

that lights/notes would randomly disappear as the polyphony limit of the instrument/lightbox was 

reached. To avoid this in the future, one could implement a system to sort midi messages by 
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velocity, so that the output message is ordered by priority, and the important partials don’t 

disappear. 

CONCLUSIONS 

 

As is demonstrated by the educational literature on multi-sensory education, it is a highly effective 

field which will surely begin to find its way into modern educational spaces. As a result, it is very 

important that an inherently novel, sensory field of study – such as music – is not left behind. 

Though the accuracy of some of our results was not as concrete as we would have hoped, the 

findings were still extremely exciting, as they proved that audio-visual spectral interaction is feasible 

for educational purposes. The interactivity of Max-For-Live helped us to prototype quickly, however 

for robustness I would suggest the development of lower level tools using languages such as 

JavaScript and C++ – both of which can operate within the max for live domain, should educators 

wish to imbue their programs with some interactivity. It is also worth noting that I am not a 

mathematician or computer scientist by trade, and so I would recommend that the primary take 

away from this project is a proof of concept for the synthesis of these processes, and their potential 

to create a powerful whole. 

 

Word Count: 3020 
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AP P E NDICE S  

 
i ADSR Diagram: 

 
ii Spectrogram (frequency against time, heat as amplitude) for Acoustic Double Bass, generated in audacity:

 

Spectrogram for Electric Double Bass:

 

 
iii Middle C on a number of random VST and real-world instruments: 
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ivThe above instruments but without time constraints (purely amplitude/frequency domains), generated in 
Ableton: 
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v Despite using “quality” instead of “tone-colour” he made the same distinction in 
contrast with Johnston 

vi Diagram to demonstrate discretisation of frequencies into pitch classes after filtering: 

 

 
vii Please see iv for examples of tonal imprints 

 



 

 

23 

 
 
viii The harmonic series of overtones (adapted from measured tones 46 (cite))

 
ix Sine wave before and after tape saturation and distortion 
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x The DFT is defined by:  

 

(Rao, Kim, and Hwang 2010, 5) 

Thanks to a number of optimizations (further described by Rao et al), this DFT can be performed in real time, 

using the Fast Fourier Transformation (FFT) and its Inverse (IFFT) (Lewis and Welch, n.d.). In order to deal with 

non-periodic source waves, we use a cosine wave to introduce pseudo-periodicity into the signal with a 

Hamming window function, the details of which are too involved for me to explain here, but are outlined 

wonderfully in both the max documentation (https://docs.cycling74.com/max5/tutorials/msp-

tut/mspchapter25.html) and by Sanzaloni et al (2007).  

After making our input signal a periodic one, then conducting our FFT, we get two sets of cartesian 

coordinates, a real and imaginary component, which are then converted to polar using the following 

transformations:  

 

𝜑 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) 

Where x and y are the real and imaginary outputs of the Fourier transform respectively 
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Where – for each frequency bin – r and  correspond to the amplitude and phase (displacement of the start 

points of the wave in relation to a neutral 0 radians spot) of each waveform. I would recommend that one 

does not make this “signal” audible (unfortunately this recommendation is based on personal experience). 

Since the data is discrete, with a set of floating points for each frame (the number of samples in the frame is 

user determined and a power of 2) it makes sense to write it into an array for processing. We can do this by 

storing data for each frequency bin according to the following formula: 

Matrix Index (MI)  “(MI +1) * Sampling rate/Frame size” Hz,  

where the amplitudes for each frequency can be mapped to midi velocity logarithmically.  

Note that, as a result of the limitations of the Nyquist frequency, the latter half of the matrix is just a reflection 

of the first, and so must be discarded. 

xi Noisy sub bass before filter: 

 
 
After amplitude/frequency high-pass filter: 

 
 
Noise which has been filtered out: 
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xii Using jit.catch. Since we are using matrix operations, our audio is technically in the video processing domain 

of jitter, and so, like a video, for every window of the FFT, a single matrix of data is generated. 

 
xiii This trick of frequency-domain matrix manipulation within the time domain is really exciting, and definitely 
an opportunity for further research and experimentation! However, I did not find much on this in the reading I 
conducted for this essay. 
xiv Fig for spec accumulator: Before, white noise, after filtering 

Spectrogram of source material: 

 

White noise before subtractive filtering: 
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After processing – note that it has been made to last the length of the white noise, but with the tonal 

character of the source 

 

 
xv There is an issue with this approach however, when harsh eq’s are used they have the potential to introduce 

phase inversions to the signal (Agarwal et al. 2012). 

xvi For more discussion of phase shifts and artefacts introduced by linear and non-linear equalization, see 
Agarwal et al’s paper (2012), as well as an excellent educational video by Dan Worral (Worrall 2013) 

o xvii The average matrix of size M was to be mapped to a midi matrix of size 128 (one channel of midi notes from 

0 to 127), with the amplitudes being mapped from the logarithmic decibel to the linear/exponential 

(depending on the synthesiser) midi velocity scale (from 0 to 127). This was achieved using dynamic 

floor/ceiling functions for our audio range, and then applying an inverse log and appropriate scaling to the 

midi domain 

 

xviii Fig to demonstrate aliasing/reflections, adapted from Worral (2020)

 

xix If we sum a number of sine waves (which are all below our Nyquist frequency), and their frequencies and 
phase are such that in a non-linear (or somewhat distorted, as most systems are) system, they sum to produce 
an additional wave – which has a frequency above the Nyquist frequency, then this wave would be reflected 
down, eventually back into the audible/processable domain (as per the diagram above) – AND survive the low-
pass filtering at all stages of processing. Aliasing distortion and inter-modulation are resultantly extremely 
difficult to avoid with complex analogue signals, regardless of the sampling rate. 


	Introduction
	Background
	Designing the Processing Tools
	Results and Reflections
	Conclusions
	Bibliography
	Appendices

